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(missing important notions, e.g, self-adjointness)
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Quantum Mechanics

In general (quantum or classic):

A physical system is described by a state
= collection of informations.

Classical

State = collection of real variables.

Measurement = deterministic.

Observables = real functions.

Interested in measured values
themselves.

Quantum

State = complex-valued functions.

Measurement = statistical.

Observables = self-adjoint operators.

Interested in expectation =
eigenvalues.
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Formalization

A glance of the required notions:

Definition (Quantum Space)

is qspace ((vs, inprod) : qspace) ⇔
is subspace vs ∧ is inner product inprod

Definition (Observable)

is observable (op : qstate→ qstate) ((vs, inprod) : qspace) ⇔
is qspace (vs, inprod) ∧ is self adjoint op inprod ∧
∀ x. x ∈ vs⇒ op x ∈ vs
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Complex-valued functions (1/2)

Definition (Complex functions type)

cfun = A→ complex

Definition (Algebraic operations over cfun)

Operation Notation Definition

cfun add f1 +cfun f2 λx : A. f1 x +C f2 x

cfun smul a%f λx : A. a ∗ f x
cfun neg −f λx : A. − 1%(f x)

cfun sub f1 − f2 f1 +−f2
cfun zero λx : A. 0
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Complex-valued functions (2/2)

Theorem (Complex functions are a vector space)

Addition commutativity x + y = y + x
Addition associativity (x + y) + z = x + y + z

Left distributivity a % (x + y) = a % x + a % y
Identity element x + cfun zero = x

+ tactic to automatize arithmetic reasoning: CFUN ARITH TAC.
→ allows to prove many other properties.
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Operators over functions

Definition (Complex-function operators type)

cop = (A→ complex)→ (B→ complex)

Definition (Algebraic operations on cop)

Operation Notation Definition

cop mul op1 ∗ ∗op2 λf : A→ complex. op1 (op2 f)

cop add op1 +cop op2 λf : A→ complex. op1 f +cfun op2 f
cop smul a %cop op λf : A→ complex. a %cfun op f

and negation, zero, etc.

cop mul is not commutative.

COP ARITH TAC.
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Linearity

Definition

is linear cop (op : cop)⇔
∀f g. op (f + g) = op f + op g ∧ ∀a. op (a % f) = a % (op f)

Note: In finite dimension, linear operator are matrices.

In general: op3 ∗ ∗ (op1 + op2) 6= op3 ∗ ∗ op1 + op3 ∗ ∗ op2

But, for linear operators:

Theorem

∀op1 op2 op3. is linear cop op3 ⇒
op3 ∗ ∗ (op1 + op2) = op3 ∗ ∗ op1 + op3 ∗ ∗ op2
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Linearity (composition)

Composition relations:

Theorem

∀op1 op2. is linear cop op1 ∧ is linear cop op2 ⇒
is linear cop (op1 + op2) ∧ is linear cop (op1 ∗ ∗op2) ∧
is linear cop (op2 − op1) ∧ ∀a. is linear cop (a % op1)

+ tactic to automatize the proof that a function is linear:
LINEARITY TAC.

Note: Interaction-oriented tactic
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Inner Product: Definition

Definition

is inprod (inprod : cfun→ cfun→ complex)⇔
∀ x y z.
cnj (inprod y x) = inprod x y ∧

inprod (x + y) z = inprod x z + inprod y z ∧
real (inprod x x) ∧ 0 ≤ real of complex (inprod x x) ∧
(inprod x x = 0⇔ x = cfun zero) ∧
∀a. inprod x (a % y) = a ∗ (inprod x y)

Note: axiomatic definition, because it depends on the type
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Inner Product: Properties

Many theorems, notably:

Orthogonal projection

Injectivity of inner product seen as a curried function

Pythagorean Theorem

Cauchy-Schwarz inequality
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Other notions

Eigenvalues and eigenvectors

Orthogonality

Hermitian adjoint

Self-adjoint

+ tactics

A theorem making use of all these notions:

Theorem

∀ inprod op f1 f2 z1 z2.
is inprod inprod ∧
is self adjoint op inprod ∧ z1 6= z2 ∧
is eigen pair op (f1, z1) ∧ is eigen pair op (f2, z2)
⇒ are orthogonal inprod f1 f2
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Quantum Beam Splitter

Beam splitter = four-port optical device:

I Two inputs = light beams.

I Two outputs = light beams.

In quantum optics:

I Light = stream of photons.

I Stream of photons = quantum single-mode electromagnetic
field.
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Single-Mode Formalization

A single-mode emf is characterized by:
I Its electrical charge q̂.

I Its flux density p̂.

I Its total energy: Ĥ(t) = ω2

2 q̂(t)2 + 1
2 p̂(t)2.

Definition

is sm ((qs, cs, H), ω : sm)⇔
is qsys (qs, [p, q], H) ∧ 0 < omega ∧
H = ω2

2
% (q ∗ ∗ q) + 1

2
% (p ∗ ∗ p)
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Beam Splitter Formalization

Beam splitter relates q or p of inputs, and respective outputs as
follows:  qout1

qout2

 =

 b1 b2

b3 b4

 ∗
 qin1

qin2


+ similar for p

Definition (Beam Splitter)

is bmsp (b1, b2, b3, b4, in port1, in port2, out port1, out port2)⇔
is sm in port1 ∧ is sm in port2
∧is sm out port1 ∧ is sm out port2
∧pout1 = b1 % pin1 + b2 % pin2 ∧ qout1 = b1 % qin1 + b2 % qin2
∧pout2 = b3 % pin1 + b4 % pin2 ∧ qout2 = b3 % qin1 + b4 % qin2
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Beam Splitter Energy Preservation

Main result:

Theorem (Energy Preservation)

∀ bs. is bmsp bs⇒ Hin1 + Hin2 = Hout1 + Hout2

(note: H is the Hamiltonian, i.e. energy)
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Conclusion

HOL Formalization of complex function spaces.

Formalization of related concepts: linearity, inner products,. . .

Application-oriented formalization, useful for engineering
verification.

Application to quantum theory, prove beam splitter energy
preservation.

Around 1000 lines of code with 160 theorems
→ big code size reduction thanks to automation
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Future Work

Instantiation to finite-dimension complex vectors
→ applications in electromagnetics and ray optics

Advanced formalization of quantum optics
→ quantum computers
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http://hvg.ece.concordia.ca

Thanks!
Questions?

PS: Still looking for a job in Germany. . . :-)
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Eigenvalues & Eigenvectors

Definition (Eigen pair)

is eigen pair (op : cop) (f, v)⇔
is linear cop op⇒ op f = v % f ∧ f 6= zerofun

→ very useful in applications

Theorem (Subspace of eigenvectors)

∀op. is linear cop op⇒
∀z. is subspace

({ f | is eigen pair op (f, z)} ∪ {cfun zero})

V. Aravantinos Formalization of Infinite Linear Spaces
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Orthogonality

Definition (Orthogonality)

are orthogonal inprod u v⇔
is inprod inprod⇒ inprod u v = Cx(&0)

Many theorems, notably:

Theorem (Pythagorean Theorem)

∀ inprod u v. is inprod inprod ∧ are orthogonal inprod u v⇒
inprod (u + v) (u + v) = inprod u u + inprod v v

Theorem (Cauchy-Schwarz inequality)

∀ x y inprod. is inprod inprod⇒
norm (inprod x y) pow 2 ≤
real of complex (inprod x x) ∗ real of complex (inprod y y)
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real of complex (inprod x x) ∗ real of complex (inprod y y)
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Hermitian adjoint

Definition (Hermitian)

is hermitian op1 op2 inprod⇔
is inprod inprod⇒
is linear cop op1 ∧ is linear cop op2 ∧
∀ x y. inprod x (op1 y) = inprod (op2 x) y

Note: in finite dimension, hermitian operation = matrix conjugate transpose.

In general, the existence of an adjoint is not ensured
BUT, if it exists, it is unique:

Theorem (Unicity of hermitian)

∀op1 op2 op3 inprod.
is hermitian op1 op2 inprod ∧ is hermitian op1 op3 inprod
⇒ op2 = op3
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Self-Adjoint

Definition

is self adjoint op inprod⇔ is hermitian op op inprod

Theorem

∀ inprod op x y.
is inprod inprod ∧ is linear op op ∧
inprod (op x) y = −(inprod x (op y)))
⇒ is self adjoint (ii % op) inprod

Theorem

∀ inprod op. is inprod inprod ∧ is self adjoint op inprod⇒
∀z. is eigen value op z⇒ real z
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A Theorem Making Use of All Notions

Theorem

∀ inprod op f1 f2 z1 z2.
is inprod inprod ∧
is self adjoint op inprod ∧ z1 6= z2 ∧
is eigen pair op (f1, z1) ∧ is eigen pair op (f2, z2)
⇒ are orthogonal inprod f1 f2
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